An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: applications to localized occupied orbitals.

نویسندگان

  • Joseph E Subotnik
  • Yihan Shao
  • Wanzhen Liang
  • Martin Head-Gordon
چکیده

We present here three new algorithms (one purely iterative and two DIIS-like [Direct Inversion in the Iteractive Subspace]) to compute maxima of homogeneous functions of orthogonal matrices. These algorithms revolve around the mathematical lemma that, given an invertible matrix A, the function f(U)=Tr(AU) has exactly one local (and global) maximum for U special orthogonal [i.e., UU(T)=1 and det(U)=1]. This is proved in the Appendix. One application of these algorithms is the computation of localized orbitals, including, for example, Boys and Edmiston-Ruedenberg (ER) orbitals. The Boys orbitals are defined as the set of orthonormal orbitals which, for a given vector space of orbitals, maximize the sum of the distances between orbital centers. The ER orbitals maximize total self-interaction energy. The algorithm presented here computes Boys orbitals roughly as fast as the traditional method (Jacobi sweeps), while, for large systems, it finds ER orbitals potentially much more quickly than traditional Jacobi sweeps. In fact, the required time for convergence of our algorithm scales quadratically in the region of a few hundred basis functions (though cubicly asymptotically), while Jacobi sweeps for the ER orbitals traditionally scale as the number of occupied orbitals to the fifth power. As an example of the utility of the method, we provide below the ER orbitals of nitrated and nitrosated benzene, and we discuss the chemical implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Representation of Kohn-Sham Orbitals via Selected Columns of the Density Matrix.

Given a set of Kohn-Sham orbitals from an insulating system, we present a simple, robust, efficient, and highly parallelizable method to construct a set of optionally orthogonal, localized basis functions for the associated subspace. Our method explicitly uses the fact that density matrices associated with insulating systems decay exponentially along the off-diagonal direction in the real space...

متن کامل

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Buckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries

The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...

متن کامل

Obtaining Wannier Functions of a Crystalline Insulator within a Hartree-Fock approach: applications to LiF and LiCl

An ab initio Hartree-Fock approach aimed at directly obtaining the localized orthogonal orbitals (Wannier functions) of a crystalline insulator is described in detail. The method is used to perform all-electron calculations on the ground states of crystalline lithium fluoride and lithium chloride, without the use of any pseudo or model potentials. Quantities such as total energy, x-ray structur...

متن کامل

Efficient construction of nonorthogonal localized molecular orbitals in large systems.

Localized molecular orbitals (LMOs) are much more compact representations of electronic degrees of freedom than canonical molecular orbitals (CMOs). The most compact representation is provided by nonorthogonal localized molecular orbitals (NOLMOs), which are linearly independent but are not orthogonal. Both LMOs and NOLMOs are thus useful for linear-scaling calculations of electronic structures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 121 19  شماره 

صفحات  -

تاریخ انتشار 2004